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Introduction: 
A leading cause of cancer deaths among women worldwide is due to breast 

cancer  and new therapies and optimal treatments are continuously being conceived and 
explored to better control or even cure this disease.  (1).  Diagnosis and therapeutic 
management of the breast tumor remain significant medical challenges, hence early 
detection, diagnosis, and timely treatments are essential to successful health care (2). 
Magnetic resonance imaging and spectroscopy (MRI/MRS) have gained significant 
importance during the last fifteen years for the diagnosis and monitoring of breast cancer 
therapy. The sensitivity of MRI/MRS for anatomical delineation is very high and the 
consensus is that MRI is more sensitive in detection than x-ray mammography. 
Advantages of MRS include delivery of biochemical information about tumor 
metabolism, which can potentially assist in the staging of cancers and monitoring 
responses to treatment. High sensitivity is a major advantage of contrast enhanced MRI, 
but its diagnostic relevance in the future will largely depend on improvements in 
specificity.  Current approaches in the application of MRI to breast tumors aim to 
improve specificity and sensitivity (4-17). Increased specificity is necessary to reduce the 
number of biopsies performed to confirm false positive findings. Diffusion-weighted 
imaging (DWI) is another MR based technique that probes the microstructure of tissues 
and is sensitive to the degree to which motion of water molecules is restricted in relation 
to how packed together cells are (17, 18). It has been reported that high resolution DWI 
may add valuable functional information to conventional MR protocols with short 
measurement times for the diagnosis of breast cancer and improve the specificity of MR 
imaging (19-21). However, new technological developments are necessary to assess their 
role in breast diagnosis. A method capable of identifying biochemical characteristics non-
invasively in the tumor lesions that can be used in conjunction with MRI is proton (1H) 
MR Spectroscopy (MRS).  Researchers have shown that 1H MRS can be used to 
characterize breast cancers with improved diagnostic accuracy (22-26). Unfortunately, 
multi-voxel based novel MR spectroscopic imaging (MRSI) techniques using the speed 
advantage offered by echo-planar imaging (EPI) and improved spectral resolution offered 
by two-dimensional (2D) MR spectroscopy (MRS) have not been fully explored in breast 
cancer studies so far. Hence, a major task of this project is to combine echo-planar 
correlated spectroscopic imaging (EP-COSI) with DWI approach for improving the 
overall specificity of breast cancer detection. 

 
Body: 
i) Proposed Task 1: To further optimize the multi-voxel based extension of the correlated 
spectroscopy (COSY) sequence, in which two spectral encodings will be combined with 
two spatial encodings. This four-dimensional (4D) data acquisition scheme will be 
accomplished utilizing the echo-planar imaging (EPI) approach that is commonly used 
for spatial encoding in MRI including DWI. (Months 1-6).  
 
This task was completed already (September 2010-May 2011) as reported previously. 
                                                                                       
ii) Proposed Task 2: To evaluate the EP-COSI data using a breast phantom containing 
two concentric spheres, the inner one containing several metabolites which have been 
reported in breast tissues surrounded by the outer phantom containing corn oil to mimic 
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fatty tissues known to be in breast tissues, and to optimize the echo speed-factor and 
other acquisition parameters using the phantom (Months 1-6). 
 
This task was completed already (September 2010-August 2011) as reported in our 2012 
report. 
 
 
iii) Proposed Task 3: To develop, evaluate and optimize the prior-knowledge basis set 
spectra using the GAMMA-simulation and breast phantom solutions as prior knowledge 
for the multi-voxel based COSY spectra recorded using the 3T MRI scanner (Months 3-
9). 
 
Using the GAMMA library (27), a prior-knowledge basis-sets containing metabolites and 
lipids have been prepared as reported previously. 
 
iv) Proposed Task 4: To record the EP-COSI spectra in the fatty, glandular and ductal 
areas of healthy breasts. Twenty healthy female volunteers (25-70 years old) with no 
previous history of breast cancer will be investigated. (Months 6-24). 
 
Eleven healthy women (age=26-59 years) without any prehistory of breast cancer were 
investigated using the DWI and EP-COSI MRI protocol during the first two years as 
reported previously. Six more healthy women were investigated during the current year.  
 
v) Proposed Task 5: To record the multi-voxel-based 2D spectra in patients with benign 
and malignant breast cancer. The breast metabolite and lipid concentrations calculated 
from the multi-voxel data using the ProFit algorithm will be compared with LC-Model 
processed 1D spectral based MRSI data. Twenty patients with biopsy-proven breast 
cancer (ductal carcinoma and invasive lobular cancer), twenty patients with benign 
breast tumor (fibroadenoma, proliferative fibrocystic change and papillomas) will be 
investigated (Months 6-24). 

 
We had reported studying three women with benign (age=28-44 years) and 2 with 

malignant breast cancer (age=61 years) in our last annual report. In the current year, 
using a dedicated breast MRI coil, we have investigated four malignant and three benign 
cancer patients using the 4D EP-COSI sequence on the 3T MRI scanner.  

Shown in Fig. 1 are the following: A) An axial MRI slice image recorded in a 
38yo malignant breast cancer patient showing the EP-COSI localization (white box). B) 
an extracted COSY spectrum(2ml)  recorded from the affected breast lesion  and C) 
another extracted COSY spectrum(2ml)  recorded from the unaffected breast fatty region. 
As reported previously (28), the 2D COSY spectrum from the suspicious mass showed 
elevated water and decreased lipid resonances. 

Fig. 2 shows the following: A) An axial MRI slice image recorded in a 31yo 
benign breast cancer patient showing the EP-COSI localization. B) Multi-voxel EP-COSI 
spectra; C) and D) show 2ml COSY spectra recorded from the affected mass and a 
healthy region. These results are also in agreement with our earlier data on the SV-based 
L-COSY sequence (29-30). 



 6

 

 
Figure 1. (A) An axial MRI slice image recorded in a 38 yo subject with malignant 
breast cancer showing the EP-COSI localization; the small white box shows the regions 
of interest (ROI) localized the EP-COSI sequence and the large white box with 16x16 
grids shows the spatial localization encoded by the EP-COSI sequence. (B) A 2ml 2D 
COSY spectrum from the affected breast region. (C) A 2ml spectrum showing healthy 
fatty breast region. 
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Figure 2. (A) An axial MRI slice image recorded in a 31 yo subject with benign breast 
cancer (a hypo-intense mass) showing the EP-COSI localization; the small white box 
shows the regions of interest (ROI) localized the EP-COSI sequence and the large white 
box with 16x16 grids shows the spatial localization encoded by the EP-COSI sequence. 
(B) An extracted 2D COSY spectrum from the affected breast regions. (C)  2ml spectrum 
from the fatty breast region. 
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vi) Proposed Task 6: To record multi-slice DWI in twenty patients with biopsy-proven 
breast cancer, twenty patients with benign breast tumor and twenty healthy women and to 
calculate the ADC maps. (Months 6-24). 
Figure 3. An axial ADC slice image recorded in the 38 yo subject with a malignant mass 
using the DWI sequence. 
 

 
 
Figure 4. An axial ADC slice image recorded in the 31 yo subject with a benign mass in 
both breasts using the DWI sequence. 
 
 

 
 
The diffusion weighted imaging (DWI) has been recorded in three women with benign 
and 4 with malignant breast cancer 3T MRI scanner using a dedicated breast MRI coil. 
 
vii) Proposed Task 7: To correlate the EP-COSI findings with that of DWI in 
differentiating benign from malignant breast cancers, and to calculate specificity, 
sensitivity and accuracy of the  MRSI and DWI data in differentiating benign from 
malignant tumors. (Months 6-24). 
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This task will be completed during the no-cost extension period. 
 
Key Research Accomplishments 

 
 The 4D EP-COSI has been successfully evaluated in 17 healthy women, 5 benign 

and 6 malignant breast cancer patients so far using the UCLA Radiology Siemens 
3T MRI scanner equipped with a dedicated breast phased-array assembly.  As 
summarized in the previous year reports, the 4D EP-COSI sequence is available at 
UCLA only as the sequence is not supplied by any of MRI manufacturers.   

 The DWI-MRI protocol was successfully evaluated in a total of 17 healthy 
women, 5 benign and 6 malignant breast cancer patients so far. 

 Our pilot results so far clearly demonstrate that the EP-COSI spectroscopic 
imaging sequence can be combined with a clinical breast DWI protocol with the 
total duration of less than an hour. The protocol is completely safe enough to be 
included in any MRI protocol to be evaluated in breast cancer for improving the 
overall specificity. 

 Our recent work has focused on testing retrospective Maximum Entropy and 
Compressed Sensing of the 4D EP-COSI data so that the acquisition can be 
accelerated to less than 10 minutes which will lead to less imaging time for 
patients with breast cancer. 

 
 
Reportable Outcomes: 
A. Peer-reviewed Publications: 1) Burns B, Wilson N, Furuyama JK and Thomas MA. 
Non-uniformly under-sampled multi-dimensional spectroscopic imaging in vivo: 
maximum entropy versus compressed sensing reconstruction. NMR Biomed 2014;27: 
191-201. 
2) Burns B, Wilson N and Thomas MA. Split-Bregman-based Group-Sparse 
Reconstruction of multi-dimensional MR Spectroscopic Imaging data. ISBI Beijing, 2014 
(in press) 
 
B. Presentations: We report one conference presentation as shown below.  
 An oral presentation at the ISBI conference, Beijing. China, April28-May 2, 2014 (to 

be presented) 
 

 
 
C. Books: None on Breast Cancer Research based. 
 
Conclusions: So far, the MR scanning protocol including EP-COSI and DWI-MRI 
has been evaluated in 17 healthy women, 5 benign and 6 malignant breast cancer. We 
will continue to recruit 8-10 malignant, 4-6 benign and 3 healthy women during the next 
year. The UCLA mammo co-investigators, namely Dr. Naneltte DeBruhl and Dr. 
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Lawrence Bassett have promised us to help recruiting more patients in the current no-cost 
extension year. 
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Non-uniformly under-sampledmulti-dimensional
spectroscopic imaging in vivo: maximum entropy
versus compressed sensing reconstruction
Brian Burnsa,b, Neil E. Wilsona,c, Jon K. Furuyamaa,c and M. Albert Thomasa,b,c*

The four-dimensional (4D) echo-planar correlated spectroscopic imaging (EP-COSI) sequence allows for the simultaneous
acquisition of two spatial (ky, kx) and two spectral (t2, t1) dimensions in vivo in a single recording. However, its scan time is
directly proportional to the number of increments in the ky and t1 dimensions, and a single scan can take 20–40min
using typical parameters, which is too long to be used for a routine clinical protocol. The present work describes efforts
to accelerate EP-COSI data acquisition by application of non-uniform under-sampling (NUS) to the ky–t1 plane of
simulated and in vivo EP-COSI datasets then reconstructing missing samples using maximum entropy (MaxEnt) and
compressed sensing (CS). Both reconstruction problems were solved using the Cambridge algorithm, which offers
many workflow improvements over other l1-norm solvers. Reconstructions of retrospectively under-sampled
simulated data demonstrate that the MaxEnt and CS reconstructions successfully restore data fidelity at signal-to-noise
ratios (SNRs) from 4 to 20 and 5× to 1.25× NUS. Retrospectively and prospectively 4× under-sampled 4D EP-COSI
in vivo datasets show that both reconstruction methods successfully remove NUS artifacts; however, MaxEnt provides
reconstructions equal to or better than CS. Our results show that NUS combined with iterative reconstruction can reduce
4D EP-COSI scan times by 75% to a clinically viable 5min in vivo, with MaxEnt being the preferred method. Copyright ©
2013 John Wiley & Sons, Ltd.

Keywords: EP-COSI; maximum entropy; compressed sensing; non-uniform under-sampling; spectroscopy; spectroscopic
imaging

INTRODUCTION

Changes in metabolite concentrations as a result of the altered
metabolism of cancer can be detected non-invasively using
one-dimensional (1D) MRS in vivo (1–3). However, the overlap
of spectral peaks in 1D MRS is a major impediment to the
identification of individual metabolites. Two-dimensional (2D)
MRS has increased spectral dispersion over 1D MRS and can
disentangle overlapping complex spectral peaks (4). Single-voxel
2D MRS has been shown to increase the specificity and sensi-
tivity of tumor grade classification when used with dynamic
contrast-enhanced MRI in the breast (5). However, the acquisi-
tion of multiple t1 increments per voxel to form the second
spectral dimension limits its ability to provide multi-voxel
coverage because of the long scan times needed to combine
two spectral and two spatial dimensions.
With the advent of echo-planar spectroscopic imaging (EPSI),

MRSI scans with one spectral and two spatial dimensions can
be completed within clinically acceptable times by interleaving
the acquisition of a spatial and spectral dimension within the
EPSI readout (6–8). The four-dimensional (4D) echo-planar corre-
lated spectroscopic imaging (EP-COSI) (9) sequence allows the
acquisition of two spatial (ky, kx) and two spectral (t2, t1) dimen-
sions in a single recording to form 4D MRSI. The sequence inter-
leaves the acquisition of the kx and t2 dimensions within the EPSI
readout, but ky and t1 are incrementally acquired as indirect
dimensions during each TR. The EP-COSI sequence has the ben-
efits of increased spectral dispersion and multi-voxel support,
which improves metabolite identification over multiple spatial

regions simultaneously; however, its scan time is directly propor-
tional to the number of increments in the ky and t1 dimensions.
An EP-COSI scan using typical parameters of TR/TE = 1.5 s/30ms
and ky/t1 = 16/100 can take 40min, which is too long to be used
within a routine clinical protocol.
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When the Fast Fourier Transform (FFT) is used to transform
uniformly sampled 4D MRSI data (ky, kx, t2, t1) to the spatial,
spectral domain (Y, X, F2, F1), decreasing scan times require a
reduction in either the ky spatial or t1 spectral dimension through
truncation or lower sampling rates, and a corresponding unwanted
reduction in resolution or bandwidth. However, non-uniform
under-sampling (NUS) of the spatial, spectral ky–t1 plane, in combi-
nation with iterative non-linear reconstruction, can be used to
accelerate the collection of 4D MRSI data in vivo, whilst preserving
the spatial and spectral resolutions and bandwidths (10).

Earlier work has demonstrated the feasibility of under-sampling
the mixed-domain ky–t1 plane of a 4D echo-planar J-resolved
spectroscopic imaging (EP-JRESI) dataset and reconstructing the
missing points with compressed sensing (CS) (10), a popular
method of non-linear iterative image reconstruction which
promotes data sparsity in the reconstruction domain and data
fidelity in the sample domain (11,12). The nature of spatial, spectral
NUS artifacts in the ky–t1 plane was explored, and it was shown
that l1-norm-based CS reconstruction is a viable means of reducing
the scan times of 4D EP-JRESI in vivo through NUS. In recent years,
CS reconstruction has been successfully applied to NUS MRI
(13,14), three-dimensional (3D) MRSI (15), dynamic MRI (16,17),
and multi-dimensional Nuclear Magnetic Resonance (NMR) (23).

Maximum entropy (MaxEnt) image reconstruction is an alterna-
tive non-linear iterative reconstruction technique to CS. Rather
than minimizing transform sparsity, it maximizes the entropy of
the data in the reconstruction domain, whilst preserving data
fidelity in the sample domain (18,19). MaxEnt has been successfully
used to reconstruct under-sampled images in astronomy and
multi-dimensional spectra in NMR (19–21). However, MaxEnt has
not been applied to the mixed-domain ky–t1 plane of a 4D MRSI
dataset in vivo.

The use of entropy as a regularizer in image reconstruction
predates l1-norm-based CS reconstruction and continues to be
used extensively in the reconstruction of under-sampled NMR
spectra in spite of the popularity of CS in other fields. It was first
suggested by Frieden (18) in the early 1970s after Jaynes (22)
proposed the idea of the Principle of Maximum Entropy, which
describes theMaxEnt distribution as the ‘maximally non-committal
distribution with regard to unavailable data’. This principle pre-
sents the MaxEnt prior as one that assumes nothing about the
unavailable data; by assuming nothing about those points, their
possible values are all equally likely to occur, and the reconstruc-
tion is that which most closely conforms to the uniform distribu-
tion, i.e. is flat. Peaks in the reconstruction domain are the result
of signals from the sampled data, and any artifacts from the miss-
ing data points are removed because they represent states of low
entropy that are not the result of k-space or time-domain signals.

In this article, we compare the MaxEnt and l1-norm-based CS
reconstructions of NUS 4D EP-COSI data and show that
MaxEnt is a viable alternative to CS for reducing scan times 4×
in human breast in vivo. We quantitatively characterize the
MaxEnt and CS reconstructions by comparing results for
retrospectively NUS-simulated 4D EP-COSI data at varying levels
of signal-to-noise ratio (SNR) and NUS rates. We show that retro-
spectively 4× NUS 4D EP-COSI in vivo breast data reconstructed
using either MaxEnt or CS show a comparable spatial, spectral
resolution to the fully sampled data. In addition, we show that
MaxEnt and CS reconstructions of prospective 4× NUS 4D
EP-COSI scans from the same breast study as the retrospective
data, using the same mask and sequence parameters, compare
favorably with the retrospective and fully sampled data.

Throughout this article, the NUS dataset that has not been
reconstructed and has zeros in place of missing samples is
referred to as the zero-augmented dataset to distinguish it from
the MaxEnt and CS reconstructions.

EXPERIMENTAL DETAILS

4D MaxEnt and CS reconstruction: theory

MaxEnt and l1-norm-based CS were used to reconstruct the NUS
ky–t1 plane of the 4D EP-COSI datasets.
l1-norm-based CS image reconstruction of 4D MRSI data is

formulated as a constrained convex optimization problem
(10–12):

minimize ∥ψm∥1 s:t ∥KFm� d∥2
2≤C0 [1]

where m= (y, x, F2, F1) is the reconstructed spatial, spectral-do-
main data, F is the 4D Fourier operator, K is the NUS mask that
determines which samples were acquired in the ky–t1 plane,
d= (ky,kx,t2,t1) is the k-space, time-domain sampled data, C0 is
the standard deviation of the noise in d and ψ is a known sparse
transform. ψ was chosen to be the identity transform because m
was already self sparse as shown in ref. (10).
MaxEnt image reconstruction of 4D MRSI data solves a similar

problem to CS, but uses S1/2 entropy instead of the l1-norm (19–21):

maximize S mð Þ1=2 s:t ∥KFm� d∥2
2≤C0 [2]

where S mð Þ1
2=
is the entropy of the estimated spectrum, and the

remaining terms are identical to those in the CS problem. S1/2
entropy is a concave function with a global maximum and no local
extrema, and so there is a single solution that satisfies the problem
within the feasible set of solutions defined by the data fidelity
constraint as shown in Fig. 1 (24). As can be seen, S1/2 entropy
has a global extremum and has slightly more curvature than the
l1-norm, but has far less curvature than the l2-norm.
The entropy used in the MaxEnt reconstruction was not the

often used � ∑ plog(p) entropy introduced by Shannon (25),
but the S1/2 entropy derived by Daniell and Hore (20) specifically

Figure 1. Plot showing –S1/2 entropy (blue), l1-norm (red) and l2-norm
(green). Each function has been normalized to equal unity at |x| = 1.
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for NMR spectra originating from spin 1
2= nuclei, such as 1H, used

in MRSI:

S mð Þ1
2
¼ � ∑

i¼N

i¼1

mij j
def

log
mij j�

def þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ mij j=def

� �q
2

0
@

1
A

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ mij j

def

� �2
s

[3]

where def is a scaling parameter related to the sensitivity of the
scanner and is calculated for m of length N as

ffiffiffiffiffiffiffiffiffi
C0=N

p
(21). S1/2 is

used because the underlying physical processes that produce an
MR spectrum are not based on discrete particle events and so
cannot be modeled by simple Poisson-distributed processes as
required for the derivation of Shannon entropy (26). They are
governed by the density matrix of the spin system under inves-
tigation, and so the statistical distribution is different. Equation
[3] was derived from first principles using both a classical spin
model and a quantum mechanical model. Neither model made
any assumptions on the initial state of the spin system nor the
pulse sequence used. This equation can be applied to any MR
spectrum originating from spin 1

2= nuclei, and addresses previ-
ous concerns regarding the use of entropy in MRS and MRI
reconstruction (27).
In order to remove any differences between the MaxEnt and

CS reconstructions caused by differences in the solvers used,
both problems were solved by a Matlab implementation of the
Cambridge algorithm (19). This recasts the image reconstruction
problem into an unconstrained convex optimization problem
and uses a variant of the conjugate gradient method to itera-
tively find the extrema in two phases; the first phase minimizes
the fidelity constraint and the second phase minimizes or maxi-
mizes the objective function, while keeping the fidelity
constraint minimized. The stopping criterion for the problem is
reached when the gradients of the objective O(m) and the

fidelity constraint C(m) are parallel: ∇O
∥O∥2

� ∇C
∥C∥2

��� ��� < 0:001. Specific

details on the algorithm and modifications to accommodate
multi-dimensional MR data can be found in ref. (21).
The Cambridge algorithm calculates the gradient ∇∥m∥1∈CN

and Hessian ∇2∥m∥1∈C2Nx2N of the objective function, which
are not defined for ∥m∥1 when mi=0. Therefore, in order to
solve the l1-norm-based CS reconstruction problem, ∥m∥1 was
redefined as:

∥m∥1 ¼ ∑
i¼N

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R mið Þ2 þ I mið Þ2 þ ϵ

q
[4]

whereR and I were the real and imaginary components of mi,
and ϵ is a small non-zero value to prevent mi= 0. The gradient
and Hessian were then defined as:

∇∥m∥1 ¼ W�1m [5]

∇2∥m∥1 ¼
"

mij j�1ð1�R miÞð Þ mij j�2 �I mið ÞR mið Þ mij j�3

�I mið ÞR mið Þ mij j�3 mij j�1ð1� I miÞð Þ mij j�2

#

¼ 2� 2 block diagonal matrix

[6]

whereW∈CNxN is a diagonal matrix with wii= |mi|, and elementmi

is associated with the i th 2 × 2 block in the Hessian. The gradient
and Hessian of S mið Þ1

2
are defined in ref. (21). Only the 2 × 2

diagonal blocks of the ∥m∥1 and S mið Þ1
2
Hessians were stored

in memory during reconstruction, not the full matrices.

Sample mask generation

The ky–t1 plane of the 4D EP-COSI datasets used in these
experiments was under-sampled using 2D Poisson-gap sample
masks that were generated using a modified 1D Poisson-gap
process (28). In 1D Poisson-gap sample masks, the gaps between
samples follow a Poisson distribution, whereas the 2D extension
follows the convention that gaps between spaces follow a
Poisson distribution. However, both conventions result in the
spaces and sample points following Poisson distributions.
Poisson-distributed masks avoid large gaps between samples,
which are detrimental to the reconstruction, while ensuring that
the samples are randomly distributed (29). Compared with other
distributions, Poisson-distributed masks create the fewest
aliasing artifacts in the Fourier domain and preserve the SNR of
the under-sampled data (30).

The effects of the sample mask on the peak amplitude and
lineshape of spectral reconstructions are well documented
(29,31,32). Sample mask densities that follow the time-domain
NMR signal envelope and sample more points at higher SNR
have spectral reconstructions with lower root-mean-square
errors (RMSEs) and less non-linearity compared with sample
masks that do not. The t1 dimensions of the EP-COSI datasets
in this work were apodized with a sine-squared filter to enhance
the cross-peaks (9), but, because of T2* decay, the filtered EP-
COSI data had a skewed sine-squared signal envelope; therefore,
the 2D Poisson-gap sample mask density was modulated along
t1 with a skewed sine-squared function (33). The ky dimension
was modulated by an exponential decay function similar to that
used previously to maximize spatial SNR (34).

The sample density of a Poisson-gap mask can be modulated
by the rate parameter λ which determines both the mean and
variance of a Poisson distribution. The probability of generating
a gap g from a Poisson distribution is characterized by:

p g; λð Þ ¼ ðλg�e�λÞ=g! [7]

For large λ, large values of g are more likely, and for small λ,
small values of g are more likely. Therefore, the probability of g
can be modulated by varying the value of λ according to a sine
or exponential decay function, and the probability of large gaps
between spaces can be increased where the SNR is highest in
the MR signal envelope (28). To generate g as a function of λ, a
Poisson process can be simulated using various techniques that
do not depend on an a priori knowledge of g as above (35). For
these experiments, the poissrnd(λ) function in Matlab was used
to generate g as a function of λ. It takes as input an array of λ
and returns an array of gaps with local mean and variance λ.

2D Poisson-gap sample masks were iteratively generated in
Matlab by combining the 1D distributions of t1 and ky until the
desired NUS rate was reached.

Examples of the 2D λ, gap and mask arrays generated by 2D
Poisson-gap are shown in Fig. 2; as the size of λ and the spacing
gaps increase, the sample density increases in that area of the
mask. The magnitude point spread function (PSF) of the mask
is shown and demonstrates the viability of this approach; the
single dominant central peak with small side-lobes, surrounded
by low-amplitude, incoherent artifacts, is the desired profile of
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a NUS mask PSF (36,37). Incoherent sampling artifacts will have
low amplitudes and spurious peaks caused by coherent aliasing
will be negligible.

MR simulations

The effects of SNR and under-sampling rate on the reconstructions
were quantitatively assessed using a noise-free simulated 4D EP-
COSI dataset that contained choline+glycerophosphocholine+
phosphocholine (total choline, tCho), glutamate+glutamine
(Glx), creatine (Cr), aspartate (Asp) or nothing in each voxel, as
represented in the top of Fig. 3 by a diagonal peak from each
metabolite. Each metabolite was simulated using the GAMMA
NMR libraries (38) from a 3T localized 2D correlated spectroscopy
sequence (39) with the following parameters: 100 t1 increments,
1024 points in t2, TR/TE= 1.5 s/30ms, and spectral bandwidths of
1250 and 2000Hz along F1 and F2, respectively. Each 2D spectrum
was line broadened by 10Hz and apodized by a sine-squared filter
along t1 and a skewed sine-squared filter with skew parameter 0.5
along t2. No baseline corrections were performed on the spectra.

They were then copied into an 8×8 spatial grid to simulate
spatially distributedmetabolites as follows: the upper left quadrant
contained 2×2 voxels of tCho, the upper right quadrant contained
2×2 voxels of Cr, the lower left quadrant contained 2×2 voxels of
Glx and the lower right quadrant contained 2×2 voxels of Asp.
As a result of under-sampling the ky–t1 plane, the spatial,

spectral artifacts caused the tCho and Glx voxels to alias into
each other and the Cr and Asp voxels to alias into each other,
as illustrated by the zero-augmented data at the bottom of Fig. 3.
This changed the integrated peak area contained within each
metabolite as the spatial, spectral separation between the
metabolites broke down.
Noise was added to the simulated noise-free 4D EP-COSI

dataset to model the SNRs of 2–20 in increments of 2. It was
under-sampled 5×, 2.5×, 1.67× and 1.25×, and then separately
reconstructed by MaxEnt and CS. The SNR was varied by
simulating different levels of thermal noise in the dataset by
adding univariate Gaussian noise to the noise-free real and
imaginary channels of the 4D EP-COSI dataset (40). The desired
SNR was achieved by ensuring that the additive noise signal
power (σ2) was equal to 1/SNR of the noise-free dataset signal
power (ω2), such that:

noisy data ¼ noise free dataþ ω2

σ2 � SNR
� noise [8]

Because the additive noise was random, each SNR was
simulated and reconstructed 20 times per sample mask to
account for random fluctuations in the reconstruction. The
sampling masks were created using the 2D Poisson-gap method
described earlier.

MRSI

The breasts of three healthy volunteers were scanned using the
4D EP-COSI sequence on a Siemens (SiemensAG, Erlangen, Germany)
3T Trio scanner with the following parameters: voxel size,
1×1×1cm3, 50 t1 increments, TR/TE/averages=1.5 s/30ms/1, field
of view, 16×16cm2 FOV, and spectral bandwidths of 1250Hz and
1190Hz along F1 and F2, respectively. Each breast was scanned twice:
a 4× prospective NUS scan and a fully sampled scan using the same
field of view and shim. The NUS scan took 5min to complete and the

Figure 2. Poisson sample mask creation along the ky–t1 plane for echo-
planar correlated spectroscopic imaging (EP-COSI). Top: modulated
values of λ. Upper middle: Poisson-distributed values for each λ indicat-
ing the gap between spaces in the sample distribution. Lower middle:
resulting two-dimensional (2D) Poisson-gap sample mask. Bottom: mag-
nitude point spread function (PSF) of the 2D sample mask.

Figure 3. Simulated quad phantom illustration. Top: spatial distribution of tCho [total choline (choline+ glycerophosphocholine+ phosphocholine)],
Cr (creatine), Glx (glutamate and glutamine) and Asp (aspartate) diagonal peaks when fully sampled. Bottom: spatial distribution of the same tCho,
Cr, Glx and Asp diagonal peaks of the 4× non-uniform under-sampled (NUS) zero-augmented dataset.
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fully sampled scan took 20min. Both scans were first apodized
using a sine-squared filter along t1 and a skewed sine-squared filter
with skew parameter 0.5 along t2. No baseline corrections were
performed on the in vivo breast data. The fully sampled scans were
then retrospectively under-sampled 4× using the same mask as
employed in the prospective scan shown in Fig. 4, and both NUS
datasets were then reconstructed using MaxEnt and CS.

RESULTS

MR simulations

Quantitative results for the MaxEnt and CS reconstructions of the
simulated 4D EP-COSI dataset at different NUS rates and SNRs
are shown in Fig. 5. The top panel shows the mean RMSE versus
SNR for zero-augmented and reconstructed datasets at each
NUS rate. The RMSE provides an estimate of the reconstruction

accuracy with respect to a fully sampled reference dataset that
increases as the two datasets become more dissimilar. The RMSE
was calculated in the spatial, spectral domain as:

RMSE ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ data �j jfullj jð Þ2

q
[9]

where N is the number of data points, ‘full’ is the fully sampled
dataset and ‘data’ is the zero-augmented or reconstructed
dataset. Error bars are not shown because the standard devia-
tions were three to four orders of magnitude smaller than the
mean RMSEs and did not vary noticeably over the NUS rate or
SNR. As can be seen, the RMSE of the zero-augmented dataset
increases as the NUS rate increases, but does not vary consider-
ably with SNR, except at low NUS rates. Both the CS and MaxEnt
reconstructions show large decreases in RMSE at each SNR and
NUS rate, but, at low SNRs, RMSE begins to rise. At low NUS rates,
CS and MaxEnt have comparable RMSEs at each SNR; however,
at higher NUS rates, the RMSEs for the MaxEnt reconstruction
are lower than for CS, and this difference increases with SNR.

The bottom panel of Fig. 5 shows the average RMSE of the
diagonal and cross-peaks of tCho, Glx, Cr and Asp versus SNR of
the zero-augmented and reconstructed datasets. The RMSEs
were calculated over the metabolite peaks at the ppm locations
listed in Table 1. Each RMSE was calculated only over the four
spatially distributed voxels for each metabolite. For example,
the tCho RMSEs were calculated over voxels (2, 2), (2, 3), (3, 2)
and (3, 3), as illustrated in Fig. 3. Therefore, these RMSEs reflect
local changes to the metabolite peak lineshape and amplitude
caused by the spatial, spectral aliasing along the ky–t1 plane from
the NUS and reconstruction.

All of the metabolite RMSEs in the bottom panel of Fig. 5 show
similar trends over SNR as the overall RMSEs in the top panel of
Fig. 5 at each NUS rate. The MaxEnt and CS reconstructions have
lower RMSEs than the zero-augmented datasets, indicating that
the metabolite peak lineshapes and amplitudes are being
properly reconstructed. The MaxEnt reconstructions have lower
RMSEs for many metabolites than the CS reconstructions at
higher NUS rates, but, at lower rates, their RMSEs are roughly
equivalent.

Figure 6 shows a 1D cross-section of the fully sampled, zero-
augmented and reconstructed spectra for high and low SNR
simulated spectra at 1.25× and 5× NUS, respectively. The 1D
cross-section is indicated by the broken line across F2 at F1 = 3.65
ppm in Fig. 7, and any NUS artifacts are from aliased peaks above
and below the line, not peaks shown in the cross-section. The
high SNR, 1.25× NUS zero-augmented spectrum shows only
small deviations from the fully sampled spectrum, but they are
clearly visible in the inset. Both reconstructions restored the
baseline to the level of the fully sampled spectrum and
preserved the amplitude and lineshapes of the peaks in the full
cross-sections. The artifacts in the low SNR, 5× NUS zero-augmented
spectrum show significantly reduced peak amplitudes, broader
linewidths and Gibbs ringing along the baseline. Both recon-
structions successfully restored the linewidths of the peaks in
the full cross-sections and removed the Gibbs ringing shown
in the insets; however, MaxEnt was generally better at
restoring the peak amplitude as indicated by the red arrows.
Many of the real and imaginary peak amplitudes in the CS
reconstructions were lower than those of the MaxEnt recon-
structions, and the baseline for CS was also slightly lower.

Figure 5. Metrics comparing the zero-augmented, maximum entropy
(MaxEnt)-reconstructed and compressed sensing (CS)-reconstructed
four-dimensional (4D) echo-planar correlated spectroscopic imaging
(EP-COSI) simulated data. Top: overall root-mean-square errors (RMSEs)
of each dataset versus signal-to-noise ratio (SNR) for 5×, 2.5×, 1.67× and
1.25× non-uniform under-sampling (NUS) rates. Bottom: tCho [total
choline (choline + glycerophosphocholine + phosphocholine)], Cr (crea-
tine), Glx (glutamate and glutamine) and Asp (aspartate) metabolite-
specific RMSEs for each dataset versus SNR for 5×, 2.5×, 1.67× and
1.25× NUS rates.

Figure 4. Non-uniformunder-sampling (NUS)mask used to under-sample
the ky–t1 plane 4× in Figs 8 and 9.
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NUS of 4D EP-COSI in human breast

The results from a prospective 4× NUS EP-COSI scan of a 31-year-old
healthy human breast that was MaxEnt- and CS-reconstructed are

shown in Fig. 8A, B, respectively, with the zero-augmented data
shown in Fig. 8C. The contour levels employed in the fully sampled
results in Fig. 9Awere used in Fig. 8. Themask used to under-sample
the ky–t1 plane is shown in Fig. 4, together with the signal envelopes
for each dimension, and was generated using the 2D Poisson-gap
method described earlier in this article.
Figure 8A1, B1 shows 2D correlated spectroscopy (COSY)

spectra extracted from the MaxEnt and CS reconstructions,
respectively. They were taken from the fatty breast regions
highlighted in Fig. 8A2, B2. They clearly show the lipid diagonal
peaks, olefinic fat (UFD), methyl fat (FMETD) and fat (FAT/FAT2/
FAT3), and the cross-peaks, unsaturated fatty acid right (UFR),
unsaturated fatty acid left (UFL), and triglyceryl fat (TGFR) (5). The
spatial distribution of the UFL/UFR cross-peaks from the recon-
structions is shown in Fig. 8A2, B2with theMaxEnt reconstruction’s
spatial distribution overlaid on the anatomical MR image.
Figure 8C1 shows the same 2D COSY spectrum as in Fig. 8A1, B1

with 4× NUS applied to the ky–t1 plane using the mask in Fig. 4;
however, no MaxEnt or CS reconstruction was used. The spatial,
spectral incoherent artifacts from NUS manifest as smeared peaks
along F1, which is illustrated by the collapse of the peaks in the
1D projection of the F1 dimension on the right. The aliasing of the
large diagonal fat peaks around (F2 = 2ppm, F1 = 2ppm) obscures
the much smaller UFL/UFR cross-peaks around (F2 = 2.1 ppm,
F1 = 5.4 ppm). Figure 8C2 shows the spatial distribution of the
UFL/UFR cross-peaks and how spatial artifacts from the under-
sampling of ky–t1 manifest as errant peaks in adjacent voxels.

Table 1. Two-dimensional peak locations (ppm) for selected metabolites

tCho Glx Cr Asp

Diagonals (ppm) (3.2,3.2), (3.5,3.5), (4.0,4.0), (4.3,4.3) (2.3,2.3), (3.7,3.7) (3.0,3.0), (3.9,3.9) (2.8,2.8), (3.9,3.9)
Cross-peaks (ppm) (3.5,4.0), (3.5,4.3), (4.0,3.5), (4.3,3.5) (2.3,3.7), (3.7,2.3) N/A (2.8,3.9), (3.9,2.8)

Asp, aspartate; Cr, creatine; Glx, glutamate and glutamine; N/A, not applicable; tCho, total choline (choline +
glycerophosphocholine + phosphocholine).

Figure 7. Fully sampled two-dimensional (2D) correlated spectroscopy
(COSY) Glx (glutamate and glutamine) spectrum, with the broken line
across F2 at F1 = 3.65ppm indicating the one-dimensional (1D) cross-section
shown in Fig. 6.

Figure 6. One-dimensional (1D) magnitude, real and imaginary cross-sections of fully sampled, zero-augmented and reconstructed Glx (glutamate and
glutamine) spectra. Top: cross-sections from high-signal-to-noise ratio (SNR) spectra 1.25× non-uniform under-sampled (NUS) zero-augmented and
reconstructed using maximum entropy (MaxEnt) or compressed sensing (CS). Bottom: cross-sections from low-SNR spectra 5× NUS zero-augmented
and reconstructed using MaxEnt or CS. Insets: magnified cross-sections of spectral baselines.
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Comparing the MaxEnt- and CS-reconstructed spectra in
Fig. 8A1, B1, all of the significant diagonals and cross-peaks are
fully resolved in both datasets with qualitatively similar
linewidths and amplitudes. The only major differences between
them are that the amplitudes of the t1 ridges centered at (F2 = 1.3
ppm, F1 = 1.3 ppm) and (F2 = 1.0 ppm, F1 = 1.0 ppm) for CS are
lower than for MaxEnt.
The results from a fully sampled EP-COSI scan of the same

healthy breast as shown in Fig. 8, which was retrospectively 4×
under-sampled using the same mask and MaxEnt and CS
reconstructions, are illustrated in Fig. 9. Figure 9A shows the fully
sampled data and Fig. 9B, C shows the MaxEnt and CS recon-
structions, respectively. As the same field of view was used for
both scans, the spectra at the top of Fig. 9 show the same 2D
COSY spectra as those at the top of Fig. 8, and the bottom
shows the spatial distribution of the UFL/UFR cross-peaks. The
same contour levels used for the fully sampled data in Fig. 9A
were also employed for the MaxEnt- and CS-reconstructed
results in Fig. 9B, C.

As can be seen, all of the peaks in the fully sampled spectrum
in Fig. 9A1 are completely resolved in both the prospective and
retrospective reconstructions shown in Figs 8B1, C1, 9B1, C1;
their positions, linewidths, amplitudes and spectral resolutions
are all qualitatively comparable. However, the spatial distribu-
tions of the fully sampled and retrospective NUS results show
better agreement than the prospective NUS results in the upper
region of the breast; the excited volume of the prospective NUS
results is one row smaller than that of the retrospective NUS
results, as indicated by the arrows in Figs 8 and 9. This change
was also observed in the non-water-suppressed scans taken
prior to the prospective NUS and fully sampled scans, and there-
fore cannot be an artifact of the reconstruction.

Table 2 shows the F1 full width at half-maximum (FWHM) and
peak amplitudes of the zero-augmented and reconstructed
dataset magnitude peaks in Figs 8 and 9. For comparison, they
are normalized by the fully sampled peak amplitudes and FWHM
from Fig. 9, so that values greater than unity are larger than the
fully sampled value. As can be seen, there are quantitative

Figure 8. Prospective four-dimensional (4D) echo-planar correlated spectroscopic imaging (EP-COSI) results. Top: selected two-dimensional (2D)
correlated spectroscopy (COSY) spectrum from a 4D EP-COSI scan of healthy, fatty breast highlighted in the bottom images for maximum entropy
(MaxEnt)-reconstructed (A1), compressed sensing (CS)-reconstructed (B1), and 4× non-uniform under-sampled (NUS) zero-augmented (C1) data.
Bottom: spatial distribution of the unsaturated fatty acid left/unsaturated fatty acid right (UFL/UFR) cross-peaks highlighted in the 2D COSY spectrum
for MaxEnt-reconstructed (A2), CS-reconstructed (B2), and 4× NUS zero-augmented (C2) data. FAT/FAT2/FAT3, fat; FMETD, methyl fat; TGFR, triglyceryl
fat; UFD, olefinic fat.

Figure 9. Retrospective four-dimensional (4D) echo-planar correlated spectroscopic imaging (EP-COSI) results. Top: selected two-dimensional (2D)
correlated spectroscopy (COSY) spectrum from a 4D EP-COSI scan of healthy, fatty breast highlighted in the bottom images for fully sampled (A1),
maximum entropy (MaxEnt)-reconstructed (B1), and compressed sensing (CS)-reconstructed (C1) data. Bottom: spatial distribution of the unsaturated
fatty acid left/unsaturated fatty acid right (UFL/UFR) cross-peaks highlighted in the 2D COSY spectrum for fully sampled (A2), MaxEnt-reconstructed
(B2), and CS-reconstructed (C2) data. FAT/FAT2/FAT3, fat; FMETD, methyl fat; TGFR, triglyceryl fat; UFD, olefinic fat.
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differences between the CS- and MaxEnt-reconstructed peak
lineshapes. The zero-augmented dataset has broader, shorter
peaks as expected, and both the CS- and MaxEnt-reconstructed
peak lineshapes are closer to the fully sampled data; however,
the MaxEnt peak lineshapes are almost all closer to the fully
sampled data than are the CS peak lineshapes, which are
narrower and taller than both the MaxEnt and fully sampled
data. The increase in peak amplitudes in the CS reconstruction
is greater in the larger peaks (FAT, FAT2 and FAT3) than in the
smaller peaks (UFD, UFL, UFR) when compared with MaxEnt.

Additional quantitative differences between the MaxEnt and
CS reconstructions are illustrated in Table 3, which shows the
range of values for the (UFL +UFR)/(FAT3 + FAT2) integrated
peak area ratios and average errors from the fully sampled ratios
for the central 6 × 6 voxels of the three healthy human breasts.
As can be seen, NUS caused the ratios to vary considerably from
the fully sampled ratios with a high mean ratio error. The
reconstructed ratios show much better agreement with the fully

sampled ratios and have a much smaller mean ratio error in all
three scans than do the zero-augmented data. However, the
mean ratio errors for the MaxEnt reconstruction are almost all
smaller than their CS counterparts, indicating that the peak ratio
was more accurately reconstructed by MaxEnt. The retrospective
reconstruction results are only slightly better than the prospec-
tive results, which is not surprising, given the excitation volume
differences seen in Figs 8 and 9.

DISCUSSION

The simulated 4D EP-COSI dataset results in Fig. 5 demonstrate
how the MaxEnt and CS reconstructions perform at different
SNRs and NUS rates. Both reconstructions decrease the RMSE
significantly at each SNR and NUS rate, compared with the
zero-augmented dataset, but begin to increase at very low
SNR, which indicates that they are unable to fully reconstruct

Table 2. Relative full width at half-maximum (FWHM) along F1 and amplitude of metabolite peaks for zero-augmented, maximum
entropy (MaxEnt)-reconstructed and compressed sensing (CS)-reconstructed data from the voxel shown in Figs 8 and 9. Values are
normalized by the fully sampled peak FWHM and amplitudes

Prospective amplitude

FAT FAT2 FAT3 FMETD TGFR UFD UFL UFR

MaxEnt 1.249 1.342 1.232 1.614 0.951 1.125 1.060 1.078
CS 1.427 1.372 1.263 1.665 0.982 1.142 1.150 1.161

Prospective FWHM

MaxEnt 0.818 0.909 0.818 1.000 0.818 1.000 0.900 0.727
CS 0.727 0.909 0.818 0.900 0.909 1.000 0.900 0.727

Retrospective amplitude

Zero-augmented 0.634 0.701 0.662 0.639 0.639 0.627 0.518 0.845
MaxEnt 1.061 1.026 1.090 1.010 1.019 1.029 0.942 0.989
CS 1.237 1.138 1.017 0.961 1.077 0.995 1.071 1.043

Retrospective FWHM

Zero-augmented 1.273 1.273 1.182 1.30 1.00 1.30 1.40 1.010
MaxEnt 0.818 0.909 0.818 1.00 0.818 1.00 1.00 0.818
CS 0.727 0.818 1.010 1.00 0.727 1.10 0.80 0.727

FAT/FAT2/FAT3, fat; FMETD,methyl fat; TGFR, triglyceryl fat; UFD, olefinic fat; UFL, unsaturated fatty acid left; UFR, unsaturated fatty acid right.

Table 3. Range and mean error of (UFL +UFR)/(FAT3+ FAT2) integrated peak area ratios for fully sampled, zero-augmented,
maximum entropy (MaxEnt)-reconstructed, and compressed sensing (CS)-reconstructed data from three healthy breasts

Ratio range Mean ratio error Ratio range Mean ratio error Ratio range Mean ratio error

Breast 1 Breast 2 Breast 3

Full 0.1277–0.0456 N/A 0.1984–0.0656 N/A 0.3542–0.0277 N/A
Zero-augmented 0.2162–0.1496 0.0823 ± 0.0198 0.4699–0.3082 0.2640 ± 0.0734 1.0077–1.1785 0.2047 ± 0.0916
Retrospective MaxEnt 0.1061–0.0281 0.0244 ± 0.0071 0.1576–0.0413 0.0254 ± 0.0142 0.4134–0.0291 0.0215 ± 0.0149
Prospective MaxEnt 0.1049–0.0216 0.0326 ± 0.0083 0.1215–0.0420 0.0415 ± 0.0164 0.3422–0.0414 0.0404 ± 0.0463
Retrospective CS 0.1103–0.0275 0.0246 ± 0.0073 0.1781–0.1004 0.0357 ± 0.0235 0.4114–0.0269 0.0268 ± 0.0175
Prospective CS 0.1084–0.0211 0.0334 ± 0.0082 0.1276–0.0425 0.0397 ± 0.0140 0.3594–0.0374 0.0434 ± 0.0487

FAT2/FAT3, fat; N/A, not applicable; UFL, unsaturated fatty acid left; UFR, unsaturated fatty acid right.
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the data when features and sampling artifacts are obscured by
high levels of noise. The data fidelity constraint in Equations [1]
and [2] determines how closely the reconstructed points must
be to the sampled points within the standard deviation of noise,
which increases as the noise floor increases. This increase in the
noise floor effectively ‘loosens’ the fidelity constraint, which al-
lows the reconstructed points to deviate from their sampled coun-
terparts and increases the entropy or sparsity of the reconstructed
spectrum by narrowing the peak linewidths and de-noising smaller
features. This, in turn, increases the non-linearity and RMSE of the
reconstruction because of the loose fidelity constraint (41). The
data fidelity constraint can be ‘tightened’ beyond the standard de-
viation of the noise in an effort to reduce the RMSE and reconstruc-
tion non-linearity, but this prevents the Cambridge algorithm from
completely removing the spatial, spectral NUS artifacts close to the
noise floor, which could potentially obscure small features (21).
The metabolite RMSEs in Fig. 5 show that the reconstructions

offer significant improvements in the amplitude and lineshape of
individual peaks over the zero-augmented data, even without
using methods to reduce the reconstruction non-linearity (32).
CS and MaxEnt produce very similar results at low NUS rates,
but MaxEnt generally has a lower RMSE at higher NUS rates than
this implementation of CS. As demonstrated by Figs 6 and 7,
both reconstruction methods successfully restored the peaks
and removed the Gibbs ringing artifacts; however, CS had a
tendency to over-smooth smaller features close to the noise
floor and narrow peak linewidths. It was this over-smoothing
that reduced the amplitude of the CS-reconstructed fat tails at
(F2 = 1.3 ppm, F1 = 1.3 ppm) and (F2 = 1.0 ppm, F1 = 1.0 ppm) in
Fig. 8. The differences in peak linewidths between MaxEnt and
CS contributed to the disparity in RMSE values at higher NUS
rates, but the main contributing factor was the change in the
noise floor in the non-peak regions of the spectra. The noise floor
was slightly reduced over the entire 4D dataset in the CS recon-
structions, which was the vast majority of points in the volume;
therefore, small changes in the noise floor had large effects on
RMSE. The over-smoothing in the CS reconstructions may have
been caused by choosing ϵ= def/1000 in Equation [4], and will
be investigated in the future, although previous work has used
similar values with success (13).
The healthy human breast results in Figs 8 and 9 show that CS

and MaxEnt reconstructions work well for prospective and
retrospective NUS, filtered, in vivo EP-COSI scans. There were
minor differences between the prospective and retrospective
reconstructions; however, these can be attributed to intra-scan
variations in the excitation volumes, as these differences were
reflected in the MaxEnt and CS reconstructions, as well as in
the non-water-suppressed scans. The greater SNR loss caused
by T2* decay which was not present in the simulated 4D EP-COSI
dataset did not reduce the efficacy of the reconstructions. There
was still sufficient SNR in the time domain to reconstruct the
in vivo diagonal and cross-peaks in the spectral domain.
Although theMaxEnt and CS reconstructions of healthy human

breast were qualitatively similar, Tables 2 and 3 illustrate quanti-
tative differences between them. Both reconstruction methods
improved the ratios of the lipid peaks in Table 3 and the ampli-
tudes and FWHM of major peaks in Table 2, which shows that
they were able to reconstruct the large, aliased diagonals, as well
as the smaller cross-peaks that were obscured by the diagonals
aliasing over the ky–t1 plane. However, as shown in Table 2, the
CS-reconstructed peaks were narrower with higher amplitudes
than their MaxEnt counterparts. This discrepancy increased with

peak amplitude, indicating a higher degree of non-linearity in
the CS reconstruction relative to MaxEnt. Using the relative peak
amplitudes and FWHM values from Table 2 to calculate the peak
area, instead of the integrated peak area that was used for Table 3,
the relative (UFL +UFR)/(FAT3+ FAT2) ratios for MaxEnt and CS
for the retrospective reconstructions are 0.960 and 0.825, respec-
tively. Because the FAT3 and FAT2 peaks from the CS reconstruc-
tion are relatively larger than the MaxEnt peaks from the
increased non-linearity, their relative ratio with the UFL and UFR
peaks is smaller. This increased non-linearity was a contributing
factor in the larger mean ratio errors in Table 3 for the CS recon-
structions relative to the MaxEnt reconstructions.

The under-sampled data in Fig. 8C1, C2 show artifacts spread
along F1 and Y, as well as reduced spectral resolution along F1
and larger FWHMs in Table 2, caused by convolution with the
broad NUS PSF. The homogeneous nature of healthy fatty breast
spectra, coupled with the inherently low spatial resolution of 4D
EP-COSI, made it difficult to determine from the figures whether
the spatial resolution along Y decreased as a result of the NUS
PSF. However, it is clear that the effects of the NUS PSF along
F1 were removed by MaxEnt and CS by the narrower FWHM
values in Table 2 and the lack of NUS artifacts in Figs 8A1, B1,
9A1, B1. The errant spectral peaks in the spatial distribution were
removed in Figs 8A2, B2, 9A2, B2, suggesting that the spatial PSF
along Y was also improved. Any spectral bleed from the spatial
PSF of the EP-COSI pulse sequence along X was orthogonal to
the effect of the NUS PSF along Y, and was not affected by the
MaxEnt and CS reconstructions.

The results in Figs 5–9 indicate that MaxEnt and CS produced
qualitatively similar reconstructions; however, the MaxEnt results
were quantitatively better by a small margin as discussed above.
This is not surprising, given that the objective functions of
CS and MaxEnt are similar, but there are minor differences
between them as shown in Fig. 1. CS uses the l1-norm of the
reconstructed spectrum in some transform domain, and MaxEnt
uses entropy, which is a log-sum function that can be rewritten
as a reweighted l1-norm, ∑wi � |mi|, where wi is log[f(mi)], the log
of a function of the reconstructed spectrum. Previous work has
shown that reweighted l1-norm objective functions can outperform
l1-norm-based CS reconstruction (42), and direct comparisons bet-
ween MaxEnt and l1-norm-based CS reconstruction have shown
them to be qualitatively equivalent (43). This is the first known work
to show quantitative comparisons between these techniques, how-
ever, and further research into their relative performance is ongoing.

The Cambridge algorithm used to solve the MaxEnt and CS
reconstruction problems was demonstrated to be robust against
different levels of SNR and NUS rates for the simulated and
in vivo datasets. There are other l1-norm solvers available for
the CS reconstruction problem; however, many require parame-
ter tuning for different datasets in order to find the optimal
reconstruction parameters (44,45). The Cambridge algorithm
does not have any tuning parameters that must be adjusted to
find the optimal reconstruction for a dataset, which offers a sub-
stantial workflow improvement over other solvers. Although the
Cambridge algorithm can be modified to solve the CS l1-norm
reconstruction problem, it takes, on average, 5–10 times longer
to converge as the MaxEnt problem, which took 7–10min, on
average, using a 64-bit dual-core, 3.4-GHz Core i7 processor with
16GB RAM. Therefore, we do not recommend its use as an
l1-norm solver; it was only used for the current work in order to
compare results for MaxEnt and CS reconstruction that were
not biased by different solver implementations. However,
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because it is relatively fast, robust to SNR changes, does not
require parameter tuning, and provides MaxEnt results that were
equal to or better than those of CS, the Cambridge algorithm is
well suited as a MaxEnt solver.

The Poisson-gap sampling masks used in these experiments
were generated by a random Poisson distribution, which
injects a degree of uncertainty into the reconstruction. It has
proven to be a reliable technique that generates masks with
desirable PSFs, as shown in Fig. 2, and the RMSEs of the
reconstructed datasets using different Poisson-gap sample
masks are stable (28). Previous attempts by our group to use
deterministic masks that were not randomly generated were
difficult to optimize and suffered from coherent aliasing,
which cannot be removed by MaxEnt or CS reconstruction
(32,46). Recent work in NUS multi-dimensional NMR datasets
using deterministic sample masks has shown promise and
could be adapted to 4D MRSI (47).

Because of the random nature of the Poisson-gap sampling
masks, they were chosen by an empirical heuristic that minimized
the width of the central peak, the total power of the incoherent
artifacts, and the ratio of the largest artifact peak to the central peak
in themask PSF. They followed a skewed-sine bell modulation func-
tion to maximize the reconstruction SNR, but were not optimized
for specific metabolites or post-processing spectral filters. In our
experiments, we observed that mismatches between a sample
modulation function and the filtered signal envelope of a metabo-
lite results in failure to sufficiently sample the high-SNR points along
t1 and prevents the full metabolite peak area from being
reconstructed (31,32,48). Therefore, it should be emphasized that
the sample mask is crucial to the SNR of each reconstructed metab-
olite for 4D EP-COSI data, and there is a dependence on the shape
of standard spectral filters applied prior to reconstruction (33).

Further research into reducing the non-linearity of the
reconstructed peaks to make accurate quantification possible,
and comparisons with additional CS methods, is ongoing. In addi-
tion, future papers will address the use of Poisson-gap versus
deterministic sample masks, and the optimization of the modula-
tion functions for specific metabolites and different spectral filters.

CONCLUSIONS

This work has demonstrated that MaxEnt is a viable alternative to l1-
norm-based CS reconstruction for accelerating the acquisition of 4D
EP-COSI data in vivo. MaxEnt provided reconstructions equal to or bet-
ter than those of CS, and the robust nature of theCambridge algorithm
without the need for parameter tuning makes it a good candidate for
clinical use. The CS and MaxEnt reconstructions throughout this
work were qualitatively similar; however, the quantitative results
indicated increased non-linearity in the CS reconstruction when
compared to MaxEnt. Simulated 4D EP-COSI data provided a quan-
titative characterization of both reconstruction methods at differ-
ent NUS rates and SNRs, and the 4× NUS in vivo EP-COSI breast
data showed that a clinically viable 5-min breast scan is possible.
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ABSTRACT

4D Magnetic Resonance Spectroscopic Imaging data pro-
vides valuable biochemical information in vivo, however, its
acquisition time is too long for a clinical protocol. In this
paper, 4D simulated MRSI data at PSNRs=20, 10, 5 are
under-sampled 2X, 4X, 6X, or 8X and reconstructed with
Compressed Sensing and Group Sparsity. A Group Sparse
problem solution within the Split-Bregman framework is de-
rived, which allows for arbitrary, over-lapping grouping struc-
tures. Preliminary results show that Group Sparse metabolite
peak amplitudes and line width reconstructions are more
accurate than Compressed Sensing reconstructions.

Index Terms— Group Sparsity, Compressed Sensing,
Split Bregman, Convex Optimization, Spectroscopic Imaging

1. INTRODUCTION
Magnetic Resonance Imaging (MRI) exploits the resonant
frequency of 1H protons within water in vivo to generate
anatomical images of the human body. Magnetic Resonance
Spectroscopic Imaging (MRSI) is a similar imaging tech-
nique to MRI, however in lieu of the resonant frequency of
1H protons in water, the resonant frequencies of 1H protons in
metabolites are used to generate a metabolic image instead.
Each metabolites has a unique resonance spectrum in vivo
caused by their molecular bonding structure, which can be
used to identify and quantify their concentrations within each
voxel. Using this concentration information, the biochemical
compositions of healthy and diseased tissues can be deter-
mined without the need for invasive biopsies and the altered
metabolism of cancers can be detected [1].

The Echo-Planar Correlated Spectroscopic Imaging (EP-
COSI) MRSI pulse sequence allows for the simultaneous
acquisition of two spatial and two spectral dimensions,
(ky ,kx,t2,t1), in one scan in vivo [1]. This 4D sequence
provides a 2D spectrum for each voxel in a slice. The overlap
of resonance peaks within a single spectral dimension is a
major impediment to identifying individual metabolites and

This work was supported by: a National Institute of Health (NIH)
grant #1R21NS080649-01A1 (BLB), an IDEA Expansion grant from the
US Army Department of Defense (DOD) Breast Cancer Research Program
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the increased spectral dispersion offered by a second spec-
tral dimension can disentangle complex over-lapping spectral
peaks. However, 4D MRSI acquisitions are slow compared
to most MRI sequences and can take up to 40 minutes, which
is too long to be used on a routine clinical basis.

4D EP-COSI data acquisition is a rasterized scan that ac-
quires a 2D spatiotemporal plane, kx−t2, from the 4D volume
during each repetition time (TR). The second spatial (ky) and
spectral (t1) dimensions are incrementally acquired between
rasters until the entire 4D volume is sampled. ky is incremen-
tally acquired using standard phase encoding techniques from
MRI and t1 is incrementally acquired as a series of 1D spec-
tra with modified timings [1]. To accelerate the collection of
4D EP-COSI data in vivo the incrementally acquired dimen-
sions, ky and t1, can be non-uniformly undersampled (NUS).
However, NUS produces artifacts that must be removed by re-
constructing the missing samples in the ky− t1 plane through
non-linear, iterative reconstruction [2].

Previous work has demonstrated the feasibility of under-
sampling the mixed-domain ky − t1 plane of a 4D MRSI
data set and reconstructing the missing samples with Com-
pressed Sensing (CS), Total Variation (TV) denoising, and
Maximum Entropy (MaxEnt) [3, 4]. NUS rates as low as
5X were demonstrated in vivo and showed that it is possi-
ble to accelerate the acquisition of 4D MRSI data down to
a clinically acceptable 5-10 minutes. The current work uses
the Group Sparse (GS) reconstruction method to reconstruct
simulated 4D EP-COSI data sets at different NUS rates and
PSNRs using the Split-Bregman iterative reconstruction algo-
rithm [5, 6]. The Split-Bregman algorithm has been modified
to allow for arbitrary transform coefficient grouping patterns
of overlapping or non-overlapping groups and can success-
fully reconstruct NUS MRSI data sets down to 8X. The Split-
Bregman algorithm has been previously used for TV-based re-
construction of NUS MRSI data [3] and for multi-channel re-
construction of NUS MRI data by extending the algorithm to
accomodate row-wise grouping of jointly sparse samples [7].

2. THEORY
2.1. Split Bregman Algorithm

The Split-Bregman algorithm is from the class of Alternating
Direction Method of Multipliers (ADMM) that split a con-



strained problem into a sequence of simpler unconstrained
sub-problems [6]. It differs from continuation-based meth-
ods by keeping the values of any Lagrange multipliers fixed
between iterations and modifies the data instead. This has
the benfits of increased numerical stablity and a lower depen-
dence on the initial Lagrange multiplier values. If we wish to
use the Split Bregman algorithm to solve the problem:

minu,z E(u, z)
such that H(u, z)

(1)

where E(u, z) is a convex, non-differentiable function and
H(u, z) can be assumed to be of the form Au = z. We first
convert it to an unconstrained problem:

min
u,z

E(u, z) + λH(u, z) (2)

where conventional continuation-based methods would in-
crease λ → ∞ to find a solution; however, we apply the
Bregman distance relaxation to equation 2 and split it into
sub-problems instead. The Bregman distance for the function
E(u) at the point uk is:

Dp
E(u, u

k) = E(u)− E(uk)− 〈pku, u− uk〉 (3)

where pku is the subgradient of E(u) at uk. The Bregman
distance and iteration scheme are then applied to equation 2:

(uk+1, zz+1) = minu,zD
p
E(u, u

u, z, zk) + λH(u, z)
pk+1
u = pku − λ∇uH(uk+1, zk+1)
pk+1
z = pkz − λ∇zH(uk+1, zk+1) (4)

which is iterated over k until convergence. λ is never in-
creased and under fairly weak assumptions on E(u, z) and
H(u, z), ∇uH and ∇zH → 0 as k →∞ so that pk+1 → pk

and the Bregman parameters converge [6]. However, because
H(u, z) is of the form Au = z, equation 4 can be simplified:

(uk+1, zz+1) = minu,z E(u, z) + λ‖z −Au− bk‖22
bk+1 = bk +Auk+1 − zk+1

(5)
where bk+1 is a Bregman parameter that ensures Au → z as
the iterations converge without increasing λ and sacrificing
stability. Because E(u, z) is convex and non-differentiable,
equation 5 is split into u and z subproblems, which are solved
independently at each iteration, decoupling u from z:

uk+1 = minuE(u, zk) + λ‖zk −Au− bk‖22
zz+1 = minz E(uk + 1, z) + λ‖z −Auk+1 − bk‖22
bk+1 = bk +Auk+1 − zk+1

(6)
2.2. Group Sparse Reconstruction

GS reconstruction is an extension of CS that exploits the
correlations among adjacent transform coefficients caused
by their structured sparsity [5]. Structured sparsity is the
tendency of large transform coefficients to be adjacent to
eachother and form clusters. In GS reconstruction, adjacent
transform coefficients are reconstructed together in groups

rather than individually, as is done in CS. By reconstructing
groups of coefficients, the GS signal model correlates indi-
vidual transform coefficients with their neighbors allowing
them to influence eachother.

GS reconstruction can be formed as a constrained convex
optimization problem that uses the l1,2-norm as the objective
function instead of the l1-norm used in CS. The l1,2-norm is:

‖z‖1,2 = ‖zg1‖2 + ‖zg2‖2 + ...+ ‖zgL‖2 (7)

where zgi ∈ CP = {uj , ul...un} and j, k, n ∈ {S =
1...N, P ≤ N} is a group of transform coefficients from
u. The MRSI GS reconstruction problem is then defined as:

minu,z ‖z‖1,2
such that ‖RFu− f‖ ≤ σ

z = Gu

(8)

where u = (Y,X, F2, F1) is the reconstructed spatial,
spectral-domain data, F is the 4D Fourier operator, R is
the under-sampling mask that determines which samples
were acquired in the ky − t1 plane, f = (ky, kx, t2, t1) is the
sampled k-space, time-domain data, G is the group matrix of
1s and 0s that determines which coefficients from u belong
to each group in z [8], and σ is the standard deviation of the
noise in f . The SB problem reduces to the CS problem when
each group contains one coefficient andG = I . Because each
transform coefficient may be within more than one group and
separate reconstructions must be created for each version of
that coefficient, the set of transform coefficient groups, z,
may contain more points than u.

2.3. Split-Bregman Based Group Sparse Reconstruction

The MRSI GS reconstruction problem can be solved by the
Split-Bregman algorithm by defining equation 8 as an uncon-
strained problem:

min
u,z

E(u, z) + λH(u, z) (9)

where
E(u, z) = ‖z‖1,2 + µ‖RFu− f‖22
H(u, z) = ‖z −Gu‖22

(10)

By following the process defined in equations 4-6, we can
derive u and z sub-problems and a Bregman parameter update
that solves the unconstrained problem in 9:

uk+1 = minu µ‖RFu− f i‖22 + λ‖zk −Gu− bkz‖22
zz+1 = minz ‖z‖1,2 + λ‖z −Guk+1 − bkz‖22
bk+1
z = bkz +Guk+1 − zk+1

(11)
where µ and λ are Lagrange multipliers. The zk+1 sub-
problem is non-differentiable, however, its equivalent prob-
lem can be solved:

zk+1 = minz
L∑
i=1

[
‖zgi‖2 + λ‖zgi − (Guk+1)gi − (bkz)gi‖22

]
= gshrink(Guk+1 + bkz ,

1
λ , G)

(12)



where gshrink is group-wise shrinkage over each group [8].
Because the uk+1 sub-problem is differentiable, optimality
conditions can be derived for u and simplified to:

(µF ′R′RF + λG′G)uk+1 = µF ′R′f i + λG′
(
zk − bkz

)
(13)

where G′G is a diagonal matrix with each (G′G)ii the num-
ber of groups that contain transform coefficient uk+1

i [8]. If
each transform coefficient is in the same number of groups,
so G′G is a multiple of I , the left-hand side of equation 13 is
circulant and can be inverted by the Fourier transform:

uk+1 = F ′K−1F
(
µF ′R′f i + λG′

(
zk − bkz

))
(14)

where K = (µR′R+ λG′G) is diagonal. If each transform
coefficient is not in the same number of groups and G′G is
not a multiple of I , uk+1 in equation 13 can be solved for by
the Gauss-Seidel method.

Iterating the sub-problems and Bregman update over k in
equation 11 solves the unconstrained problem; however, to
solve the constrained problem in equation 8, an outer iteration
is completed over i that updates f based on changes to uk+1:

f i+1 = f i +
(
f −RFuk+1

)
(15)

The number of iterations over k is application dependent, but
for the MRSI GS problem, we use 15 iterations over k for
each iteration over i and iterate over i until the normalized
residual error between uk+1 and f i is less than 10e−5.

3. METHODS
CS and GS reconstructions were quantitatively compared
using a simulated 4D EP-COSI data set that contained in
vivo concentrations of the metabolites: Aspartate, Choline,
Creatine, GABA, Glutamate, Glutamine, Glucose, Lactate,
Myo-Inositol, and N-acetyl-aspartate. The 2D spectrum of
each metabolite was simulated using the GAMMA NMR
libraries with the following parameters: 100 t1, 1024 t2,
TR/TE= 1.5s/30ms, and spectral bandwidths of 1250Hz and
2000Hz along F1 and F2, respectively. Each 2D spectrum
was line-broadened by 10 Hz to simulate in vivo conditions
then apodized by a sine-squared filter along t1 and a skewed
sine-squared filter with skew parameter 0.5 along t2. They
were then copied into the central 6x6 region of a 16x16 spatial
grid to simulate a spatial distribution.

Noise was added to the simulated noise free 4D EP-COSI
data set to model PSNRs of 20, 10, and 5. The SNR was
varied by adding univariate Gaussian noise to the noise-free
real and imaginary channels of the 4D EP-COSI data. It was
under-sampled 8X, 6X, 4X, and 2X and then separately re-
constructed by CS, GS with non-overlapping groups (GS1),
and GS with over-lapping groups (GS2). The group sizes used
in (GS1) and (GS2) were (t1, t2) = (4, 16), which were em-
pirically determined. The CS problem was solved by mak-
ing the group size one coefficient, (t1, t2) = (1, 1). Because
the noise was random, each SNR was simulated and recon-
structed 50 times per NUS rate.

4. RESULTS AND DISCUSSION
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Fig. 1. The mean linear correlation coefficient between the
fully sampled and reconstructed 4D EP-COSI data sets after
8X, 6X, 4X, 2X NUS at PSNRs of 20, 10, 5

The mean linear correlation coefficients between the re-
constructions and the fully sampled simulated 4D EP-COSI
data set are shown in figure 1. Values were calculated from
the 50 reconstructions performed at each PSNR and NUS rate.
Error bars are not shown because the standard deviations were
three to four orders of magnitude smaller than the mean cor-
relation coefficients. The linear correlation coefficient is a
measure of the strength of the linear relationship between two
vectors; two vectors are strongly correlated for values close
to 1 and −1. As can be seen in figure 1, both the GS recon-
structions have higher mean correlation coefficients than the
CS reconstructions for all PSNR values and NUS rates tested.
Additionally, the GS2 reconstructions have higher mean cor-
relation values than the GS1 reconstructions at higher NUS
rates and this difference increases with PSNR. This suggests
the metabolite peak line-shapes and amplitudes are more ac-
curately reconstructed by the GS reconstructions than CS.

Figure 2 shows a representative 2D spectrum from the
simulated 4D EP-COSI data set at PSNR=5. The left shows
the fully sampled spectrum followed by the 8X NUS spec-
trum in the next column, then the CS and GS reconstruc-
tions. The bottom of figure 2 shows a cross section of each 2D
spectrum as indicated by the vertical dotted line in the fully
sampled spectrum. In each cross section, the fully sampled
peaks are plotted in dark gray and the NUS and reconstructed
peaks are in black. Both GS reconstructions restored each
of the metabolite peaks to their fully sampled amplitudes and
widths, as well as reduced the noise floor below that of the
fully sampled spectrum. The CS reconstructed Glx peak is
smaller than the fully sampled peak and the GABA peak am-
plitude is larger, while the NAA peak is restored to its origi-
nal amplitude and line-width. This indicates a higher degree
of non-linearity in the CS reconstruction than the GS recon-
structions, which may have adverse effects on metabolite con-
centrations estimates that rely on relative peak areas.
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The effects of the reconstruction on the GABA cross peak
are illustrated in table 1. The mean amplitudes and Full-
Width Half Maximums (FWHM) along F1 for the metabo-
lite peak with respect to the fully sampled values are given
for the 4X and 8X NUS data sets, and the CS and GS re-
constructions for PSNRs=20, 10, 5. Values were calculated
from the 50 reconstructions as in figure 1. As was seen in
figure 2, the CS reconstructed GABA peak is larger and nar-
rower than the fully sampled peak at each PSNR and NUS
rate. The GS reconstructions were better able to reconstruct
the GABA metabolite peak to the appropriate amplitude and
FWHM. The GS2 reconstructions show a trend of better rel-
ative performace to the other reconstruction methods at high
NUS rates and PSNRs, which was also seen in figure 1.

PSNR=20 PSNR=10 PSNR=5

A
m

plitude

4X 8X 4X 8X 4X 8X
NUS 0.733 0.612 0.730 0.608 0.726 0.601
CS 1.092 1.043 1.100 1.035 1.128 1.035
GS1 0.986 0.944 0.977 0.933 0.958 0.894
GS2 1.025 1.01 1.011 0.987 0.982 0.936
NUS 1.018 1.128 1.032 1.121 1.047 1.112 FW

H
M

CS 0.897 0.913 0.850 0.891 0.780 0.842
GS1 0.958 0.966 0.980 0.973 1.008 0.985
GS2 0.973 0.977 0.975 0.974 0.975 0.970

Table 1. GABA cross peak amplitude and F1 FWHM relative
to fully sampled values.

The Split-Bregman GS problem converges in fewer iter-
ations than the CS problem, but takes more time to compute
per iteration because of group-wise shrink. The current Mat-
lab implementation of GS takes 2-3 times longer to converge
than CS and is a current topic of research.

5. CONCLUSION
This work shows that GS reconstruction of 4D MRSI data
sets is a viable alternative to CS-based methods. The Split-

Bregman-based GS algorithm was developed and evaluated
on simulated data sets at varying PSNRs and NUS rates. GS
reconstruction results demonstrated better metabolite peak re-
production and lower non-linearity than CS. Further work is
required to determine the optimal grouping strategy under dif-
ferent experimental conditions.
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